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Motivation

Intro

The problem of induction, simply put: How to justify at least some inductive
methods.

E.g., how to justify: Pc1,Pc2, . . . ,Pcn |∼ Pcn+1

Problem: Not deductively valid; inductive justification (e.g. by reference to
past success) is circular.

Meta-inductive approach: No proof of validity per se, but validity per com-
partionem.

Result: Inductive methods are justified as best available alternatives.

This result can be also used for probability aggregation.
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Meta-Induction
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Meta-Induction

Some More Details

Let’s consider a series of events e1, e2, . . . with outcomes in [0, 1].

Now, consider prediction methods for the event outcomes:
pred1, . . . , predn of the form predi (et) ∈ [0, 1]

A simple prediction method for binary events would be, e.g., a binarized
likelihood method: pred(et) = 1 if E1+···+Et−1

t−1 ≥ 0.5 otherwise pred(et) = 0

e1 e2 e3 e4 e5 e6 e7 . . .

Ei 0 0 1 1 1 1 0

pred1 1 0 0 0 1 1 1

Now, assume that past predictions and event outcomes (E ’s) are available.

Then we can evaluate prediction methods according to their success.
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Meta-Induction

Hume’s Challenge: Induction as Mere Custom?

“There is no object, which implies the existence of any other if we consider these
objects in themselves, and never look beyond the ideas which we form of them.

[. . . ]
We have no other notion of cause and effect, but that of certain objects, which
have been always conjoined together. . . .We cannot penetrate into the reason of the
conjunction.

[. . . ]
All our reasonings concerning causes and effects are derived from nothing but custom;
and that belief is more properly an act of the sensitive, than of the cogitative part of
our natures.”

(Hume, Enquiry, 1748)
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Meta-Induction

Reichenbach’s Approach: Induction as Best Alternative

1 “If we cannot realize the sufficient conditions of success, we shall at least realize the nec-
essary conditions.” (p.348)

2 “Let us introduce the term ”predictable” for a world which is sufficiently ordered to enable
us to construct a series with a limit.” (p.350)

3 “The principle of induction [i.e. the straight rule which transfers the observed frequency to
the limit] has the quality of leading to the limit, if [the world is predictable].” (p.353)

4 “Other methods [might also] indicate to us the value of the limit.” (p.353)

5 “The inductive principle will do the same;” (p.355)

6 [Hence, asymptotical convergence with the inductive principle is a necessary condition.]

(Reichenbach 1938)

Problem: Assumption that the frequency of Ei is limited.
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Meta-Induction

An Expansion: Meta-Induction

1 Nothing in Reichenbach’s argument excludes that God-guided clair-
voyants may be predictively much more successful than the object-
inductivist.

2 He was well aware of this problem, and he remarked that if successful
future-teller existed, then the inductivist would recognize this by ap-
plying induction to the success of prediction methods.

3 But he did neither show nor even attempt to show that by this meta-
inductivistic observation the inductivist could have equally high predic-
tive success as the future-teller.

4 Skilful application of results from machine learning serve this aim.

(cf. Schurz 2008, p.281)
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Meta-Induction

The Meta-Inductive Recipe

How to cook up predMI :

• We measure the past success of a method by inverting the loss.

Ei 0 0 0

pred1 1 0 1

pred2 0 0 1

⇒
success

0.33

0.66

• We measure the attractivity of a method for the MI -method (predMI )
by cutting off worse than MI -performing methods.

predMI 0.66

pred1 0.33

pred2 0.66

⇒
attractivity

0.0

0.66
• We calculate weights out of the attractivities.

attractivity

pred1 0.0

pred2 0.66

⇒
weight

0.0

1.0
• We define predMI by attractivity-based weighting of predictions predi .
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Meta-Induction

Formal Details

success(predi , t) =

t∑
k=1

1− loss(predi (ek),Ek)

t

attractivity(predi , t + 1) =


success(predi , t), if success(predi , t) ≥

success(predMI , t)

0, otherwise

weight(predi , t + 1) =
attractivity(predi , t + 1)

n∑
k=1

attractivity(predk , t + 1)

predMI (et+1) =
n∑

k=1

weight(predk , t + 1) · predk(et+1)
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Meta-Induction

Application to the Problem of Induction

Main result of the meta-inductive research programme: long-run optimality;
In the long run predMI ’s performs at least as good as any other method, if
loss is convex:

limt−→∞success(predMI , t)− success(predi , t) ≥ 0, for all 1 ≤ i ≤ n

By this success-based induction is justified (per comparationem).

Hence, given the past success of inductive methods as, e.g., the so-called
straight rule, a success-based choice of these methods is also justified.

Provisos: garbage in ⇒ garbage out, predMI is “parasitical”, optimality of
predMI holds only for the long run and only for real-valued predictions, the
number of object-methods has to be finite, etc.
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Meta-Inductive Probability Aggregation

Meta-Inductive Probability Aggregation
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Meta-Inductive Probability Aggregation

Intro

“Consider a group of people [. . . ] supposed to have the same utility function, at
least for the consequences to be considered in the present context, but their personal
probabilities are not necessarily the same. The group of people is placed in a situation
in which it must, acting in concert, choose an act f from a finite set of available acts
F [.] The situation just described will be called a group decision problem.”

(cf. Savage 1972, p.172)
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Meta-Inductive Probability Aggregation

Intro

Savage’s investigation of statistical opinion pooling rules or his “model
of group decision” triggered a vast amount of literature (Savage 1972,
chpt.10.2).

A lot of it is collected in (Genest and Zidek 1986).

It was also expanded to the Bayesian framework (cf., e.g., Mongin 2001).

The main underlying problem is the question of how to aggregate probability
functions:

Pr1, . . . ,Prn =⇒ Praggr

An example for the relevance of such an aggregation is the reference class
problem: How to deal with different statistics based on overlapping reference
classes? Prsample1 ,Prsample2 =⇒ Praggr
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Meta-Inductive Probability Aggregation

Probability Aggregation Constraints

Similarly to the famous impossibility results in social choice theory (cf., e.g.,
Arrow 1963), impossibility results hold also for probability aggregation:

E.g., the impossibility of combining linear aggregation with Bayesian update
or independence constraints.

Therefore, e.g., Bayesian orthodoxy cannot be fully met by linear weighting.

However, important aggregation properties are jointly satisfiable:

• (U) Universality: aggr allows as input any Pr (probability function).

• (A) Anonymity: aggr cannot identify any specific input:
aggr(Pr1, . . . ,Prn) = aggr(Pr1, . . . ,Prn,Prn−1) = . . .

• (S) Systematicity: Pr{1,...,n}(φ) = aggr∗(Pr1(φ), . . . ,Prn(φ))
where aggr∗(Pr1(φ), . . . ,Prn(φ)) = aggr(Pr1, . . . ,Prn)(φ); similarly for Pr ;
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Meta-Inductive Probability Aggregation

Aggregation Properties

Relevance of these properties:

(U), (A), and (S) jointly characterize linear weighting aggregation methods:

Praggr (Xj = xk) =
n∑

i=1

wi · Pri (Xj = xk)

However, there is a problem of underdetermination of linear probability ag-
gregation:

By these formal constraints alone the question of how to choose the weights
wi is not settled.

As it turns out, meta-induction can be applied also here:

• It allows for the success-based calculation of weights.

• It can provide a justification for using these weights.
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Meta-Inductive Probability Aggregation

Meta-Inductive Probability Aggregation

The meta-inductive framework is based on prediction games, i.e. series of
events (e1, e2, . . . ).

However, one can also try to base it on probabilistic versions of these.

Instead of the series e1, e2, . . . we now have a series of probabilities or
random variables: X1,X2, . . .

We assume that their value space is finite x1, . . . , xq.

The true outcome (binary states): val(Xt = x1≤k≤q) = 0/1

Pr1, . . . ,Prn are the probabilities of object-forecasters.
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Meta-Inductive Probability Aggregation

Example

• X1,X2, . . . : Random variable about the weather

• x1: � (rain, exclusively)

• x2: � (sun, exclusively)

• x3: � (wind, exclusively)

• Pr1, . . . ,Prn: the predictions of n different weather forecasters

t1 t2 t3 . . .

Xt � � � . . .

I.e.: 1.0� 0.0� 0.0� 0.0� 1.0� 0.0� 0.0� 0.0� 1.0� . . .

Pr1 0.5� 0.25� 0.25� 0.25� 0.5� 0.25� 0.15� 0.75� 0.1� . . .

Pr2 0.1� 0.9� 0.0� 0.85� 0.1� 0.05� 0.5� 0.1� 0.4� . . .
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Meta-Inductive Probability Aggregation

Meta-Inductive Probability Aggregation

Meta-induction can be employed in order to construct success-based
weights.

Note that this cannot be done simply by calculating weights for each value
of the value space separately (this would be realised, e.g., by running parallel
prediction games).

Reason: One easily ends up with an inconsistency (Praggr would no longer
be guaranteed to be a probability function).

However, there is a nice way to implement meta-induction in probability
aggregation: Namely by considering a game about the prediction of the
true value of each round of the past.
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Meta-Inductive Probability Aggregation

Meta-Inductive Probability Aggregation

Here is how it works:

success(Pri , t) =

t∑
k=1

1− loss(Pri (Xk = xk∗), val(Xk = xk∗))

t

. . . where k∗ points to that value of x1, . . . , xq which turned out to be the
true value at k (i.e. that k∗, such that val(Xk = xk∗) = 1)

Given this success-measure, we can, again, define a measure for attractivity
which in turn allows for defining success-based weights.
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Meta-Inductive Probability Aggregation

Results of Meta-Inductive Probability Aggregation

These weights serve for meta-inductive linear weighted probability aggrega-
tion.

Such aggregation is provably long-term optimal.

Provisos: Same as for meta-induction in general plus: No Bayesian update.

However: The long-term optimality holds not only for distance measures as,
e.g., that one proposed by Brier, but for all convex distance measures (e.g.
also for normalized relative entropy etc.).

So, meta-induction provides an optimality argument for a wide range of
probabilistic distance/scoring measures.
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Summary

Summary

• Meta-induction allows for a wide range of interesting applications.

• One of them is probability aggregation.

• Here, e.g., formal constraints characterize linear weighting as adequate
probability aggregation.

• However, the choice of the weights remains underdetermined.

• Meta-inductive optimality results suggest to apply success/attractivity-
based weights.
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